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ABSTRACT

A general formulation of the theory of departures from LTE in free-free

emissions and absorption is developed. The problem is treated subject to the

restrictions to steady state and radiative interactions. Particle distribution

function and radiation field are studies separately, special attention is given to

the transfer problem. The possibility of negative absorption (maser action) is

discussed.
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1. INTRODUCTION

The importance of departures from local thermodynamic equilibrium (LTE)

was first recognized in connection with certain astrophysical problems, in

particular, in connection with the interpretation of the spectrum of the outer solar

atmosphere 1. Ftellar plasmas are, in the observable layers, rather weakly

ionized, so that the major part of the radiation spectrum consists of spectral

lines, i. e. , emissions and absorptions involving only bound states, with the free

energy states in LTE. In physical terms this statement implies that the free

energy states of the electrons are distributed according to a Maxwellian distribu-

tion, whereas emission and absorption are connected by Kirchhoff's'law2.

In many domaines of laboratory physics, however, plasmas are completely

ionized, and the population of bound states can be altogether neglected. Then,

only the free electrons are involved in radiative interactions, and departures

from a Maxwellian distribution of the free energy states.

The purpose of this paper is to outline a general formulation of departures

from LTE in free-free emissions and absorptions. In this report, we restrict

our considerations to steady states, where the change in the population of states

is (during observation times) small compared with the populations themselves,

and to radiative transitions which involve emission or absorption of a single

photon.

Radiative interactions affect the particle distribution and the spectrum of the

radiation field. There are therefore always two sets of conditions to be con-

sidered, derived from the behavior of the radiation field, and from the behavior

of the particles. Neglecting one set of conditions does mathematically not lead
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to any contradiction, but leads to physically invalid solutions. This fact has been

3
pointed out previously

We begin by deriving the steady state condition for the particle distribution

function (Section 2), turning to the radiation field in Section 3. In Section 4, the

trivial solution (LTE) is discussed. Section 5 deals with some obvious physical

consequences of the steady-state condition, Section 6 contains a discussion of the

relations between particle distribution function and local intensity of the radiation

field. In an Appendix, the question of possible maser action involving continuous

transitions is discussed.

2. STEADY-STATE CONDITION FOR THE ENERGY DISTRIBUTION OF FREE

PARTICLES

If a steady state has been reached in a plasma, the number of particles

entering a certain energy state must equal the number of particles leaving that

state. This relation then holds for all energy states.

Consider an arbitrary state with energy Eo, populated by N(E ) dE0

particles per unit volume. Neglecting non-radiative transitions, the following

processes will occur: the particle may absorb a quantum
C

Q = nw (1)

from the indident radiation field and move up to the energy level

El= E + 1', (2)

or it may emit a quantum f-, descending to the energy level

E2 = E -0. (3)

2o
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The number of these processes per unit time depends on the interaction

merhanisms (bremsstrahlung, cyclotron radiation, Cerenkov radiation, etc.),

on the local intensity of the radiation field (absorption and induced emission only),

and on the number of particles N(E) available.

The pertinent quantities were defined and discussed in detail in a previous

2
publication . We recall that the number of particles in the energy range E, E+dE

-3
has the dimension [N(E) dE] = cm , so that the LTE- distribution (Maxwell

distribution) reads

3/2 -E/KT 2'N(E) dE= 4rrN (rrKT) e e dE. (4)o

Writing the radiation field too in terms of energies (9) instead of angular frequen-

cies (w), we have [Id0c] = e rg/cm sec sterad, so that in LTE (Planckian distri-

bution)

I n =3 [e /Kw 1]1 dO. (5)4 73n3CZ

Later on, the abbreviation

H 43n32 [r3 2
H = 41 n c [erg cm sec sterad] (6)0

will be used.

The relations between the cross sections of spontaneous emission, absorption

and induced emission read

H
0

in 3 sp
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and

-.b 1 QS * (8)

In the following,

Q(E,fl) L2 Qsp'
(9)

2= v2 is the energy of the upper state from which the spontaneous
where E mv /2

emission takes place. The probability coefficient Q then has such a dimension

that [Q(E, I)dM] = sec sterad.

We are now ready to write down the number of incoming (n +) and outgoing

(n-) processes for the arbitrary energy state E 0

000

n + N(E° +A) Q(E° +D',fl) [1 + H IS] d-fl +

o EO (10)

+ N(Eo -. ) Q(Eo, Q) JE E '

0

and

n_ = N(E°) Q(E° + S1, | EO d dH +1

+ N(E) Q(Eo,') [1 + OI]
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In steady state,

n -= n+ (12)

or, after some algebra, 0S Q(E°+A1a)'I)fE° +i,£lIdfl =

0 (13)

o 5

The bracket symbol is defined by the following expression

~N(x) + 1H' NX I' ( ) (14)

In physical terms, Q(Eo,'). { Eo12 represents the difference (positive or

negative) between the number of absorption processes (upwards) and emission

processes (downwards) involving the states E and E -9. Clearly, if theo 0

states E and E -0 are in detailed balancing (LTE), the bracket is zero.0 0

The intensity of the local radiation field can always be expressed, for a given

photon energy 9, in terms of a Planckian with a pseudo-temperature T. Similarly,

the number-density of particles in two states differing in energy AE = 11 can be

expressed in terms of a Maxwellian distribution, with a fixed total number N ofo

particles and, again, a pseudo-temperature T'. If the bracket { Eo, 0is zero,

T = T'. It will be shown later that the qituation where { Eo, + 0 for all f2 is

equivalent to LTE.
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Returning to the general discussion, we write the steady-state condition (13)

in the following form:

Q(xY)x y Q(x,y)-x, . dy = E
0 x = E°+Y x
o0

for all E = const.
0

Mathematically, the steady-state condition can be visualized in the following

way: over the x-y plane, the function Q(x, y). {x, y} may be plotted. The steady-

state condition (15) then requires that allong ALL paths outlined in Fig 1, the

integral must vanish.

/ /
K/

=E=C~on St
//

C OE* coviSt Eo -X IL
Fig.1 Fig.2

Let us finally rewrite Eq. (15) in terms of x = E upper and z = Elower

instead of x and y, where x, y and z are related by

x - z = y. (16)

The result reads

6



to

Q(Xz X-z)* Ix, x-z dxJ = E0  Ix = E (17)

Eo 0

The graphic representation similar to Fig 1 is outlined in Fig 2, where now the

function

Q(x, X-z). x, x-z = f(x,z) (18)

must be plotted vs. x and z.

.3. STEADY-STATE CONDITION FOR THE RADIATION FIELD

Before we discuss the steady-state condtion for the particles, Eq. (17), any

further, let us briefly glance at the conditions which a stationary state imposes

on the radiation field. So far, the radiation field entered our description only

through I1 as a parameter in the bracket function {xy} . We shall see presently

that in order to conserve radiative energy, only a considerably weaker condtion

must be satisfied, but that self-consistent solations to any given problem are

subject to a set of additional requirements, outlined in Section 6.

There are two characteristic differences between the radiation field and the

particle distribution. First, the particles are stationary, whereas the radiation

field consists of photons entering and leaving a certain volume element. Second,

the number of particles before and after a radiative interaction is conserved in

steady state, whereas the number of photon3 may increase or decrease as a

result of these radiative interactions. In fact, a typical problem in radiation

theory is the flow of radiation through a plasma in which the total radiative energy

is of course conserved, but in which the high energy photons, for example, are

7



broken up into several low energy units.

Hence, the only condition imposed on the radiation field under stationary

conditions is that the total radiative energy at each point is conserved. This

quantity is found by multiplying the number of transitions involving a state E 0

by the appropriate energy fl, and then integrating over all states E from 0 to 0o,o

i. e., by forming

I d dx . f*(x,z)= dzx 5dz . f,(x,z) =, (19)

0 Z 0 0

Where now

f(X, Z) =(x - Z) Q(x, x-Z) { x, x-z (20)

/ 

_
//

Fig.3

Mathematically, the two representations (19) correspond to the two possible

orders of integration in Cartesian coordinates of the function f*(x, z) over the

shaded area in Fig 3. The equality of integrals of this type is shown in texts on

4
analysis, for instance, in Jeffrey's book .Identifying f*(x, z) with his f(y), our

coordinates x and z with Jeffrey's x and y, and letting his t -. #o f* clearly

8



vanishes at infinity on physical grounds] , transforms our expressions (19) into

Jeffrey's standard equations.

In physical terms the first integral (19) corresponds to counting first all

transitions leading into a fixed lower level E0 , and then varying E (or z ) over

the whole range, whereas the second integral in (19) first counts all transitions

leading into a fixed upper state Eo, and then varies this upper state E (or x)

from 0 to co.

The steady-state condition for the radiation field is clarly weaker than the

condition for the particle distribution, Eq. (17), since it involves only the

INTEGRAL over expressions of the type (17). It will, therefore, in general not

restrict the validity of solutions compatible with (17). However, the energy

condition (19) is not redundant in the sense that it is automatically fulfilled for all

solutions to (17), due to the additional factor (x-z) under the integral.

Finally, self-consistency of solutions imposes a set of conditions developed

in the context of the transfer problem in Section 6.

4. TRIVIAL SOLUTION: LTE

Before we discuss condition (17) in more detail, the existence of a trivial

solution should be mentioned. This trivial solution corresponds to f(x, y) - 0

everywhere. On physical grounds, this means

SX, X-ZI = 0 for all x, z, (21)

since a Q which vanishes everywhere implies no radiative interactions whatsoever.

Eq. (21) describes detailed balancing for all energies and energy differences.

Intuitively it is obvious that detailed balancing can only occur in LTE. To show

9



that the two concepts are equivalent under very general conditions requires, how-

ever, a considerable amount of statistical mechanics, and is far beyond the scope

5
of this paper . We shall merely VERIFY that for radiative transitions between

continuous energy states detailed balancing and LTE are equivalent.

That LTE is SUFFICIENT for detailed balancing is obvious: inserting a

Maxwellian distribution for N(E) and a Planck function for I makes the bracket

symbol (14) vanish identically, i.e., leads to detailed balancing.

Reflection is needed to show that LTE is NECESSARY for detailed balancing.

For this purpose, we write Eq. (14),

jx,y' =N(x)+I H [(x) - N(x-y)] (22)

in the form
N(x-y) _ K(y) N(x)

fT (23)

where 3

K(y) = 1 (24)

does -not depend on x. Using the further abbreviation

G(t) = N(t) / ft' (25)
I

we have the functional equation

G(x-y) = K(y) G(x). (26)

We now expand K(y) around y = 0,

K(y) = K(O) + dK y + (27)
dy y 0

with

K(0) = 1, (28)

Because of Eq. (26).

[dK/dyIy_= 0 = K' 0  (29)

10



cannot vanish in general, since (N(x) must contain the Maxwellian distribution for

which obviously K' 0= 0. In fact, it can be shown that if K' = 0, the normaliz-o 0

ation integral

SN(E) En dE = No En> (30)

0

diverges, corresponding to an infinite temperature (see below).

Next, we expand G(x-y) around x,

dG
G(x-y) = G(x) +--- y + (31)

dx

For y -# 0 we find from Eqs. (26), (27) and (31)

dG
G(x) - - y = [1 + K'o.Y] G(x), (32)

dx

with the solution

-K* • x(33)

G(x) = const-e o

or
0 -K' -E

N(E) dE = const'e 0 K E" .dE (34)

Eq. (34) represents the Maxwell distribution with
K' = 1 /KT * (35)

0

From Eqs. (23) and (24) it is now readily, verified that

HO +,K'. -.-a (36)
In•- = [e 0

A1



(36)

which is the Planckian distribution with the same value (35) for K' . Hence, weo

have verified that the condition { x, y} 0 is equivalent to LTE.

5. DISCUSSION OF THE STEADY-STATE CONDITION FOR PARTICLES

We return now to the ge neral steady-state condition for particles, Eq. (17),

with the additional condition (19) representing conservation of radiative energy. A

detailed discussion of sufficient and necessary conditions to be satisfied by I1

and N(E) in order to be compatible with Eqs. (17) and (19) will be given in a later

report. It suffices here to mention certain MINIMUM requirements concerning

the bracket function (14).

Since the bracket function must vanish integrated along ALL paths of the type

outlined in Fig 2, there is necessarily at least one point on EACH integration path

for which
IX, X-Z~ 0 (37)

All these points form a one-dimensional continuum which from obvious geometrical

considerations falls in either one of the two categories:

1. All z-values, 0 < z < co, fulfill Eq. (37). The corresponding x-values lie

in a range x < x < oo with x > 0, finite. Similarly, the corresponding y-range

will not, in general, comprise all possible values.

2. Ally = x-z values, 0 < y < co, fulfill Eq. (37). x > xo,

0 < z < z ; x > 0, z > 0.
- - 0 0 0

Figs 4 and 5 illustrate schematically the two cases. As emphasized before, these

are minimum requirements, and whether in an actual case there exists one of the

12



outlined minimum solutions will depend on the form of Q(E,Q).

Fig.4. Case 1. Fig.5. Case 2.

$0 / /

f ° /!O /
/ /00

00 al

Assuming a solution of the type illustrated in Fig 5, we find that I can be

represented by a Planckian function with a temperature T(P) which may depend

on 2 E y. At the same time, the ratio N(E + f2)/N(E) can be represented for all

E-values by a Maxwellian distribution with the same T(P)-value from above. Only

if T is independent of 2 in the whole plane, thus{ x, z} 0, we come back to

the LTE-solution.

6. RADIATIVE TRANSFER AND STEADY STATE

So far, I and N(E) were treated as independent quantities. This procedure,

however, is in general not permitted. In fact, in most practical cases, I is the

sum of all contributions to the emission from the whole plasma surrounding the

specific point under discussion. The emission itself, on the other hand, depends

on N(E).

13



There are numerous cases one might think of which range from the completely

self-consistent problem, in which I1 is SOLELY due to the plasma radiation, to

the opposite extreme, where In contains practically only OUTSIDE radiation. The

general problem is described by the transfer equation which under steady-state

conditions reads
2

dIa/drt = Sa - 1 n , (38)

and has the solution =I j Scn(tii) e" dr:•
(39)

The optical depth is defined for Eq (39) so that at the plasma point under

study. The integration is extended to infinity, i. e., to the plasma boundary. Any

incoming radiation field at this boundary can then be accounted for by a properly

matched source term S C. IC depends, of course, on direction through

dr = V ds (40)

where s is an arbitrary spatial coordinate, is the absorption coefficient.

In our present terminology, the emission coefficient

00

E aQ(Ef).N(E).dEla = const (41)

so that the dimension of erg/cm 3 sec sterad. Next.
00

H= -. a. Q(E,Q) [ N(E,11) - N(E)] dE (42)
MLjI' = const

-l)
(dimension: cm ). From Eqs (41) and (42), the source function

2 -1 1](3
S XX /rX [cm 2 sec- sterad" (43)

follows immediately.

14



Hence, in order to obtain a self-consistent solution, I shuld be replaced in

Eqs (17) and (19), i.e., in the bracket function, by the appropriate solution (39)

to the transfer problem, using Eqs (41) - (43) to represent the source function.

The result is then a set of integral equations that contain solely N(E) as unknown.

3
It should be emphasized that I1 cannot be simply replaced by S 0. Such a

procedure corresponds to what may be called "semi-detailed" balancing, implying

ICI = OD ,(44)

because of Eq (39), or

E= Z n-ra.I r (45)

With the aid of Eqs. (41) - (43), Eq, (45) can be written as

SQ(E,il) -N(E).- dEIrk cos
£=const (6

C1 (46)
00

Q(E,Sn) [..-."LN(E.-f) - N(E) flj
- = const

or, in our previous terminology, as
00

~ Q(XY)4 Xly'.dx I y = XZ = const (47)

for all Q = y. The path of integration is illustrated in Fig 6.

15
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Fig.6

This additional condition will in general be compatible with Eq (17) only for

{xy} 0, i.e., inLTE.
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APPENDIX: MASER TYPE AMPLIFICATION

Our definition (42) allows for a very elementary discussion in general terms

of tLhe problem of possible negative absorption, i.e., maser-type amplification

of continuous radiation. This problem has recently been treated by several

6
authors in view of possible applications

Since the factor in front of the integral is positive, the problem of negative

T 'S reduces to the study of

ErnT

Q(E,C) [ - N(E-fl) - N(E) ]dE a R(Em) - R(fl) (48)

In (481 the infinite upper limit is replaced by a formal cut-off parameter E inm

order to ensure finite normalization for strongly non-Maxwellian distribution

functions. Negative absorption occurs, if

The inequality (49) can, theoretically, be fulfilled in two cases: since Q on

physical grounds is always positive, only the slope as a function of E is of

importance. On the other hand, slope AND sign must be taken into account in

the case of the bracket [ ]. In fact, for a distribution of the mathematical form

of the Maxwell distribution, Eq (4), ý I goes through zero for T -+ co, and becomes

negative for formally negative values of T.

Since all known interaction mechanisms lead to transition probabilities that

effectively increase -pith increasing E, a combination of
[ I < 0, Q (0 E )50

is of little practical intervst. Hence, negative absorption is confined to hypoth-

etical distribution functions whose energy variation is of the form
"a +8 (51)

N(E) ý E V a > 0 .
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